
The slides that follow were presented at the PSAAP Bidder's
Meeting May 16-17, 2006 and represent the ASC Trilab authors
and interests as presented in the associated White Paper for this
subject area.

Predictive Science Academic Alliance Program (PSAAP)

Xabier Garaizar, garaizar@llnl.gov (LLNL)
David Jefferson, jefferson6@llnl.gov (LLNL)

Marv Alme, alme@lanl.gov (LANL)
Daniel Rintoul, mdrinto@sandia.gov (SNL)

May 16, 2006

PSAAP: Computer Science

UCRL-PRES-221275

FXG - 3

Preliminaries

MSCs
— focus on large-scale, multidisciplinary, scalable

and integrated simulations
—have as primary goal to develop a verified and

validated predictive capability for an application

Avoiding a red herring
—Computer Science Research is not a primary goal

of the PSAAP
—Computer Science in support of ASC applications

is a component of the PSAAP

FXG - 4

Background

ASC codes are “conservative” on issues relating to
—Code architecture
—Computing paradigms
—Computer languages
—…

How could we advance the science of prediction if we
were given a clean slate, with freedom to re-invent
scientific computation?

FXG - 5

Thrust Areas

Scalable algorithms

Algorithms and programming technology specific to
parallel simulation

New parallel programming models

Parallel componentization technology

Software fault avoidance / detection / recovery

OS support for capability and capacity machines

Scalable I/O technology and abstractions

FXG - 6

Scalable Algorithms

New scalable algorithms at application and systems
level.

Must be novel in some way, or cut across many
application areas.

Examples:
— better performance, better error estimators, faster

convergence, better conservation
— algorithms that are MPMD, better balanced, use

interval arithmetic, etc.
— algorithms that address OS, I/O, fault tolerance, or

other systems problems
— algorithms that scale to 100,000 processors or more

FXG - 7

Programming technology specific to
parallel simulation

Componentization, formal interfaces for simulations as objects,
scriptable simulations (external control)

Algorithms for coupling simulations

Unification of continuous and discrete simulation

Physical units (kg, watts, Hz) as part of language type system

Domain specific constructs, e.g. support for grad, curl, or tensor
ops

Efficient execution engines for complex models with disparate
time and length scales

Techniques for fully unstructured space-time meshes in 3+1 or
more dimensions (i.e. arbitrarily variable time steps and arbitrary
time-varying meshes)

FXG - 8

Parallel programming models

Programming models express parallelism at nine orders of
magnitude of scale, from pipelined vector ops (109 Hz, 1 byte) to
wide-area transactions (1 Hz, 109 bytes). We need technologies
such as

— nestable, composable parallel abstractions, classes and objects
— componentization (composable units of separately-developed

code)
— migratable units (load balancing, fault avoidance)
— checkpoint/restart, replication, rollback, redundancy, or retry

mechanisms for handling faults at all levels
— parallel high-level communication primitives (e.g. parallel remote

procedure call)
— speculative or optimistic algorithms
— parallel instrumentation, optimization, debugging at all levels
— new software build tools -- less error prone and more parallel

FXG - 9

Parallel componentization technology

Simulation codes should not be standalone executables; they
should be packaged as components to be used as units larger
computations
They should be dynamically instantiable and launchable in
parallel
The should have language-independent interfaces that go
beyond traditional APIs to include also mesh information,
physical units, etc.
Components should be migratable, checkpointable, and should
provide introspection and external control capability
Components should be internally parallel, and communicate
with each other in parallel

–requires solutions to the “MxN problem”

FXG - 10

Fault management

All scalable software must be designed with fault
management in mind

— new algorithms, with internal algorithmic redundancy for
fault detection/correction

— support for checkpoint/restart, retry, replication, rollback,
etc. in programming languages, compilers, and especially
libraries

— OS or runtime system support for anticipation of, and
migration away from, hardware faults

— communication routing around faults
— modularized management of faults, i.e. recovery confined to

the component where the fault occurs, without affecting
other components

FXG - 11

OS support

Capability and capacity machines need OS support for fault
handling, load balancing, synchronization, componentization,
I/O etc.

— boot different OS’s in different partitions to allow richer mix
of jobs to share capacity machines

— parallel boot, job launch, and DLL mechanisms
— support for load migration, job compaction, fault prediction,

avoidance, and recovery
— dynamic node allocation for expanding and contracting jobs

on capacity machines
— collective system calls
— efficient, preemptive and priority gang scheduling
— one-sided, interrupting communication

FXG - 12

Parallel I/O

Parallel I/O traditionally traditionally lags other
aspects of parallel computation, but many ASC
applications ahead may be dominated by I/O. That
could justify research in:
—parallel file systems and abstractions
—parallel relational databases
—parallel geometric and temporal databases
—parallel input from sensor arrays, including

asynchronous and real time input
—parallel visualization systems

FXG - 13

Conclusion

Successful proposals
—will not treat these as independent computer

science research areas
—will strongly connect them to the simulation

capability and ASC application requirements

This is not a prescribed list of topics, but an
illustration of some issues that might be addressed in
a successful proposal. Other topics not mentioned
may be supported as long as the connection to ASC
applications is clear.

FXG - 14

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National

Laboratory under contract no. W-7405-Eng-48.

UCRL-PRES-221275

